# How to Teach Your Child Math: Glenn Doman’s Dot Method

• Dot method?! What is it.
• Does it really work?
• Basic rules of teaching
• FAQ
• Steps
• Resources: where do I get the materials

## Dot method?! What is it?

Out of all the methods by Glenn Doman, his approach to learning math is the most… surprising. We are used to recitals of sequence of numbers (1, 2, 3…), then simple counting, then long and difficult process of weaning off counting fingers and teaching kids to do it in their minds. Glen Doman believes that there is no need for this long and difficult process. According to the research that was conducted in the Institutes of Achieving Human Potential, children are born with an ability to discern quantity of objects by sight. Remember Rainman? Looking at a hundreds of toothpicks and saying their exact number without counting. Apparently all the kids are able to do it and lose this amazing ability if we don’t help them develop it. In order to do it, Glen Doman suggests using large flash cards with dots (hence – Dot Method), increasing the number of random dots on the cards gradually, getting children accustomed first to quantities, then to equations with those quantities, and finally even with algebraic sequences, sophisticated equations and even inequalities. Since children get used to doing equations with dots (quantities) instead of numbers (meaningless symbols!), they learn to UNDERSTAND problem solving in math, as opposed to memorizing the formulas to get to the correct answer of the problem. Once children go through this introductory concept of quantities, normal numbers are finally introduced and tiny children continue enjoying sophisticated equations in the more traditional for us way: 127+12-66*2=… For the details and further proof, please read How to Teach Your Baby Math by Glen Doman. Once you are familiar with the method, you can find brief summary of steps to help you stay on track and further resources.

## Basic Rules of Teaching

1. Begin as early as possible
2. Be joyous at all times
4. Teach only when you and your child are happy.
5. Stop before your child wants to stop.
6. Show materials quickly.
7. Introduce new materials often.
10. Remember the Fail-Safe- Law: If you aren’t having a wonderful time and your child isn’t having a wonderful time – stop. You are doing something wrong.

## FAQ

See more in Glenn Doman’s method’s FAQ and see comments below for some personal experiences with math program by other parents.

## Steps

Zero Step (for newborns – kids under 3 months old, all other kids should start at the First Step) – dot cards that are very-very large: 15″x15″, with black, very bold dots 1.5″ in diameter. Begin with one card, show it for 10-15 seconds and hold it absolutely still to give him a chance to focus on it. On a first day show “one” dot card 10 times, on second show “two” dot card 10 times; proceed for 7 days with different cards 10 times each day. Repeat for the following two weeks: so, for the first three weeks you show “one” dot on Mondays, “two” on Tuesdays… On week 4: chose dot cards 8-14 and cycle each of them 10 times a day for the following three weeks (card “eight” on Mondays, card “nine” on Tuesdays, etc.) Continue with this pattern until tiny infant is seeing detail consistently and easily (around twelve weeks or later). Chose the correct time of the day: when the baby is in a good mood. Once you realize your infant can see the detail clearly, proceed to step one. First Step – Quantity Recognition Teaching your child to to perceive actual numbers, which are true value of numerals – 5 dot cards 1-100. 2 sets of 5 cards each, three times a day each set. Second Step – Equations Start after you’ve showed first 20 cards for First Step. Don’t test, continue introducing new quantities, i.e. dot cards, (until you reach 100), and add sessions with simple equations: 2+2=4, 5+11=16. Avoid predictable equations: 1+2=3; 1+3=4; 1+4=5. After two weeks of different addition equations, do subtractions, followed by multiplication and division (at two week intervals of 3 sessions of equations per day). Third Step – Problem Solving You have completed First Step (showing dot cards), and First Step (simple Equations). Progress onto more sophisticated three step equations, e.g: 2x2x3=12. “You are still extraordinary giving and completely non-demanding” (GD, Math, p. 125)- you haven’t done any testing. “The Purpose of problem-solving opportunity is for a the child to be able to demonstrate what he knows if he wishes to do so. It is exactly the opposite of the test.” (GD, Math, p. 126). You can do it at the end of the session. Hold two cards and ask where is 22 (always offer options!) “This is a good opportunity for a baby to look at or touch teh card if he wishes to do so.” If he does, make a big fuss. If he doesn’t, simply say, “This is 32” and, “This is fifteen.” (GD, Math, p. 127). Give a simple equation and then hold two dot cards for him to chose the result of the equation. Again, always offer options, and if your child doesn’t want to show a card, simply and upbeat say it yourself. After a few weeks of these equations, make them even more fun: combine addition and subtraction, multiplication and division, but don’t mix the pairs e.g. 40+15-30=25, not 4+2*7. After a few weeks, add another term to the equations: 56+20-4-4=68. You can further progress onto:

1. Sequences
2. Greater then and less then
3. Equalities and inequalities
4. Number personality
5. Fractions
6. Simple algebra

Fourth Step – Numeral Recognition 11×11 poster board with numerals written in large, red, felt-tipped marker: 6″ tall by 3″ wide. Combine numbers with dots: 12 greater then dot card of 7; dot card of 12=12 (number) Fifth Step – Equations with numerals Make 18″x4″ poster board cards for equations with numerals: 25+5=30; 115x3x2x5 not equals 2,500; 458 divided by 2 minus 229.